
Journal of Global Optimization 26: 229–259, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

229

A Unified Monotonic Approach to Generalized
Linear Fractional Programming

NGUYEN THI HOAI PHUONG and HOANG TUY
Institute of Mathematics, PO Box 631, Bo Ho, Hanoi, Vietnam (e-mail: htuy@hn.vnn.vn)

Abstract. We present an efficient unified method for solving a wide class of generalized linear
fractional programming problems. This class includes such problems as: optimizing (minimizing
or maximizing) a pointwise maximum or pointwise minimum of a finite number of ratios of linear
functions, optimizing a sum or product of such ratios, etc. – over a polytope. Our approach is based
on the recently developed theory of monotonic optimization.

Key words: Generalized fractional programming, Sum or product of ratios of linear functions,
Monotonic optimization, Global optimization, Polyblock approximation approach

1. Introduction

In a variety of applications we encounter a class of nonconvex optimization prob-
lems which have either of the following formulations:

max

{
�

(
f1(x)

g1(x)
, . . . ,

fm(x)

gm(x)

)
| x ∈ D

}
(P)

min

{
�

(
f1(x)

g1(x)
, . . . ,

fm(x)

gm(x)

)
| x ∈ D

}
(Q)

where D is a nonempty polytope in Rn, f1, . . . , fm, g1, . . . , gm are linear affine
functions on Rn such that

−∞ < ai := min
x∈D

fi(x)

gi(x)
< +∞ i = 1, . . . , m, (1)

while � : Rm → R is a continuous function, increasing on Rm
a+ := {y ∈ Rm| yi �

ai (i = 1, . . . , m)}, i.e. satisfying

ai � y′
i � yi (i = 1, . . . , m) ⇒ �(y′) � �(y). (2)

Important special cases of these problems that have been previously studied in the
literature include, aside from linear multiplicative programs [10], various general-
ized linear fractional programs, namely:

230 NGUYEN THI HOAI PHUONG AND HOANG TUY

1. Maxmin and Minmax

max

{
min

(
f1(x)

g1(x)
, . . . ,

fm(x)

gm(x)

)
| x ∈ D

}
(�(y) = min{y1, . . . , ym})

(3)

min

{
max

(
f1(x)

g1(x)
, . . . ,

fm(x)

gm(x)

)
| x ∈ D

}
(�(y) = max{y1, . . . , ym})

(4)

2. Maxsum and Minsum

max

{
m∑
i=1

fi(x)

gi(x)
| x ∈ D

} (
�(y) =

m∑
i=1

yi

)
(5)

min

{
m∑
i=1

fi(x)

gi(x)
| x ∈ D

} (
�(y) =

m∑
i=1

yi

)
(6)

3. Maxproduct and Minproduct

max

{
m∏
i=1

fi(x)

gi(x)
| x ∈ D

} (
�(y) =

m∏
i=1

yi

)
(7)

min

{
m∏
i=1

fi(x)

gi(x)
| x ∈ D

} (
�(y) =

m∏
i=1

yi

)
(8)

(For the last two problems it is assumed that ai > 0, i = 1, . . . , m, in condition
(1))

Aside from the above mentioned problems, the classes (P) and (Q) include a
variety of other problems of interest which, to our knowledge, have been little
studied in the literature so far, such as e.g.

max

r∑
j=1

cj

m∏
i=1

[
fi(x)

gi(x)

]αij

| x ∈ D

�(y) =

r∑
j=1

cj

m∏
i=1

[yi]αij

(9)

where r is a natural number and cj , αij are real positive numbers and (1) holds with
ai > 0, i = 1, . . . , m.

Standard linear fractional programs which are special cases of problems (P), (Q)
when m = 1 were first considered by Charnes and Cooper [5]. Problems (3), (5)
have received much attention from researchers (see [18] and references therein),
problems (5), (6) have been studied in [7, 9, 12], and problems (7), (8) in [9, 13]
(see also [11]). Other results related to fractional programming can be found in
[1, 2, 19]. For a review on fractional programming and extensions, up to 1993,
we refer the reader to ref. [18], where various, actual and potential, applications

UNIFIED MONOTONIC APPROACH TO GENERALIZED LINEAR FRACTIONAL PROGRAMMING 231

of fractional programming are also described. In general, fractional programming
arises in situations where one would like to optimize functions of such ratios
as return/investment, return/risk, cost/time, output/input, etc. Let us also mention
the book [17] which is a comprehensive presentation of the theory, methods and
applications of fractional programming.

From a computational point of view, so far different ingenious methods have
been proposed for solving different variants of problems (P) and (Q). A general
unifying idea of parametrization underlies the methods developed by Konno and
his associates ([12], [13], [14]; see also [11]). Each of these methods is devised
for a specific class of problems, and most of them work quite well for problem
instances with m � 3. For example, the parametric method in [12], valid under the
assumption

min
x∈D fi(x) � 0 min

x∈D gi(x) > 0, i = 1, . . . , m (10)

is reported to have successfully solved problems (5) with m � 4. A phenomenon
quite common for this class of nonconvex global optimization problems is that the
required computational time sharply increases as m increases. According to [9],
the time needed for solving problems with m = 3 by the parametric algorithm in
[12] is about 50 times more than for m = 2 by the parametric simplex algorithm.
This motivates the development of heuristic methods to cope with the “curse of di-
mensionality”. One such method has been recently proposed in [9] for minimizing
the sum of three linear fractional functions. Reported computational experiments
show that this heuristic method gives almost the same results as exact methods but
is ten times faster.

The aim of the present paper is to develop a unified approach to all variants
of problems (P) and (Q), based on the recent theory of monotonic optimization
[22]. By providing a general numerical method that seems to work equally well
on different variants of these problems (at least for currently considered values
of m), this approach once more illustrates the wide applicability of monotonic
optimization as discussed in a number of previous studies ([15, 16, 23]).

The paper is organized as follows. In Section 2 we will first briefly review
the concepts and properties of normal sets and polyblocks, as were introduced
and investigated in [22]. These constitute the basic tools of our approach. Several
modifications will be made, however, to the basic procedure in [22], so for the sake
of completeness, we will provide a proof for the most essential facts.

In Section 3 we will reformulate problems (P) and (Q) as monotonic optim-
ization problems, namely: maximizing an increasing function over a normal set
or minimizing it over a reverse normal set. The proposed solution method will
be presented in Section 4, and some implementation issues discussed in Section 5.
Section 6 is devoted to some improved versions of the basic algorithm. Finally Sec-
tion 7 presents numerical examples illustrating the practicability of the proposed
approach (at least for problem instances with m � 7).

232 NGUYEN THI HOAI PHUONG AND HOANG TUY

2. Normal Set and Polyblock

Throughout this paper, for any two vectors y, y′ ∈ Rm we shall write y′ � y (and
say that y dominates y′) to mean that y′

i � yi ∀i = 1, . . . , m. If z ∈ Rn+, the
hyperrectangle [0, z] = {y ∈ Rm+| 0 � y � z} is called a box. Given any finite set
T ⊂ Rm+ the union of all the boxes [0, z], z ∈ T , is called a polyblock with vertex
set T . A vertex z ∈ T is said to be proper if z is not dominated by any other vertex,
i.e. if there is no z′ ∈ T such that z′ �= z and z′ � z. Obviously a polyblock is fully
determined by its proper vertices.

A set G ⊂ Rm+ is called normal if y ∈ G always implies that [0, y] ⊂ G. A
polyblock, in particular a box, is normal. The orthant Rm+ and the emptyset are also
normal sets. The intersection of any family of normal sets is obviously a normal
set. The intersection of finitely many polyblocks is a polyblock. More specifically:

PROPOSITION 1. The intersection of two polyblocks P1, P2 with vertex sets T1, T2

is a polyblock P with vertex set

T = {z ∧ z′| z ∈ T1, z
′ ∈ T2}, where (z ∧ z′)i = min{zi, z′i} i = 1, . . . , m.

(11)

Proof. P1 ∩ P2 = (∪z∈T1[0, z]) ∩ (∪z′∈T2[0, z′]) = ∪{[0, z] ∩ [0, z′]} where the
union is taken over all pairs z ∈ T1, z

′ ∈ T2. Noting that [0, z] ∩ [0, z′] = [0, z∧ z′]
we get the result. �
For an arbitrary subset S of Rm+ the intersection of all normal sets containing S is
called the normal hull of S: it is of course the smallest normal set containing S.

Clearly, a polyblock is the normal hull of its vertex set. It is also easily seen that
the normal hull of S consists of all y ∈ Rm+ for which there exists z ∈ S such that
y � z. If D ⊂ Rn and w : D → Rm+ is any nonnegative-valued function on D then
the set G = {y ∈ Rm+| y � w(x), x ∈ D} is normal. It can be verified that G is the
normal hull of the set S = {y = w(x)| x ∈ D}.

A point y ∈ Rm+ is called an upper boundary point of a nonempty normal set
G ⊂ Rm+ if αy ∈ G ∀α < 1 but αy �∈ G ∀α > 1. The set of upper boundary
points of G is called the upper boundary of G and is denoted by ∂+G.

Clearly, for every z ∈ Rm+ \ {0} the halfline from 0 through z meets the upper
boundary ∂+G of G at a unique point πG(z) defined by

πG(z) = λz, λ = sup{α � 0| αz ∈ G}. (12)

We have λ � 1, i.e. , πG(z) � z if and only if z ∈ G.

PROPOSITION 2. Let �(y) : Rm+ → R be an increasing function, i.e. a function
satisfying (2). The maximum of �(y) over a polyblock is attained at one proper
vertex of this polyblock. The maximum of �(y) over a nonempty compact normal
set G is attained on ∂+G.

UNIFIED MONOTONIC APPROACH TO GENERALIZED LINEAR FRACTIONAL PROGRAMMING 233

Proof. Let z̄ be a maximizer of �(y) over a polyblock P. If z̄ is not a proper
vertex of P then z̄ � z̃ for some proper vertex z̃ and since �(z̃) � �(z̄) it follows
that z̃ is also a maximizer. Likewise, if z̄ ∈ G is a maximizer of �(y) over G then
so is πG(z̄), because πG(z̄) � z̄. �
PROPOSITION 3. Let G be a nonempty compact normal set contained in a box
[0, b] ⊂ Rm+ and P ⊂ [0, b] be a polyblock containing G, with proper vertex set
T . For a given ẑ ∈ T \ G, with πG(ẑ) = ŷ, let T ′ be any subset of T such that
ẑ ∈ T ′ ⊂ {z ∈ T | z > ŷ}, and let T ∗ be the set obtained from T by replacing each
z ∈ T ′ with {z∗1, . . . , z∗m} where z∗i are given by

z∗i = z− (zi − ŷi)e
i , ei = i-th unit vector of Rm

+ .

Then the polyblock P ∗ with vertex set T ∗ satisfies G ⊂ P ∗ ⊂ P \ {ẑ}.
Proof. Let K be the cone formed by all y > ŷ. Clearly G ∩ K = ∅ for if

y ∈ G∩K then for ε > 0 small enough we would still have (1+ε)ŷ < y (because
ŷ < y) while (1+ ε)ŷ ∈ G (because [0, y] ⊂ G by normality of G), contradicting
the definition of ŷ = πG(ẑ). Now for any finite set E denote by [E] the polyblock
with vertex set E. For every z ∈ T ′, since G ∩ K = ∅ we have G ∩ [0, z] ⊂
[0, z] \ K, while, as can be easily verified, [0, z] \ K ⊂ [{z∗1, . . . , z∗m}], hence
G∩[0, z] ⊂ [{z∗1, . . . , z∗m}]. Since P = [T ′]∪[T \T ′], the conclusion follows. �
REMARK 1. In one extreme case when T ′ = {ẑ} the polyblock P ∗ is largest
among all polyblocks constructed as above. In the other extreme case when T ′
includes all z ∈ T such that z > ŷ the polyblock P ∗ is smallest among all these
polyblocks.

3. Preliminary Transformations

Note that condition (1) is in general weaker than (10) which is assumed by most
authors when studying (3), (5) or (4), (6). In particular, we do not exclude the case
of (5) or (6) when the objective function is the difference (rather than the sum) of
two linear fractional functions:

f1(x)

g1(x)
− f2(x)

g2(x)

where gi(x) > 0 ∀x ∈ D but fi(x), i = 1, 2, may be arbitrary (in this case
�(y) = y1 + y2, y1 = f1(x)

g1(x)
, y2 = −f2(x)

g2(x)
).

However, by simple manipulations we can always reduce the problem to the
case when

min{gi(x), fi(x)} > 0 ∀x ∈ D, i = 1, . . . , m. (13)

234 NGUYEN THI HOAI PHUONG AND HOANG TUY

Indeed, under (1) gi(x) does not vanish on D, hence has a constant sign on D and,
by replacing fi, gi by their negatives if necessary, we can always assume gi(x) >

0 ∀x ∈ D, i = 1, . . . , m. Then setting f̃i(x) := fi(x) − aigi(x) we have, by (1),

f̃i(x) � 0 ∀x ∈ D, i = 1, . . . , m, and since f̃i (x)

gi(x)
+ ai = fi(x)

gi(x)
, the problem (P) is

equivalent to

max

{
�̃

(
f̃1(x)

g1(x)
, . . . ,

f̃m(x)

gm(x)

)
| x ∈ D

}

where f̃i(x) > 0 ∀x ∈ D, i = 1, . . . , m and �̃(y1, . . . , ym) = �(y1 + a1, . . . ,

ym + am) is increasing on Rm+ in view of (2). Analogously for the problem (Q).
Therefore, without loss of generality we can assume (13) and � : Rm+ → R in both
problems (P) and (Q). Also to simplify certain argument it is convenient to assume
that � : Rm+ → R++ (by adding a positive constant to �).

Under this assumption we now reformulate problems (P) and (Q) as monotonic
optimization problems. Define

G =
{
y ∈ Rm

+| yi � fi(x)

gi(x)
(i = 1, . . . , m), x ∈ D

}
(14)

H =
{
y ∈ Rm

+| yi � fi(x)

gi(x)
(i = 1, . . . , m), x ∈ D

}
. (15)

Clearly G and [0, b] \H are normal sets contained in the box [0, b] with

bi = max
x∈D

fi(x)

gi(x)
i = 1, . . . , m. (16)

It is then easily seen that

THEOREM 1. Problems (P) and (Q) are equivalent, respectively, to the following
problems (MP), (MQ):

max{�(y)| y ∈ G} (MP)

min{�(y)| y ∈ H } (MQ)

More precisely, if x̄ solves (P) ((Q), resp.) then ȳ with ȳi = fi (x̄)

gi(x̄)
solves (MP)

((MQ), resp.). Conversely, if ȳ solves (MP) ((MQ), resp.) and x̄ ∈ D satisfies
ȳi � fi(x̄)

gi(x̄)
(ȳi � fi(x̄)

gi(x̄)
, resp.), i = 1, . . . , m, then x̄ solves (P) ((Q), resp.)

Proof. Suppose that x̄ solves (P). Then ȳ =
(

f1(x̄)

g1(x̄)
, . . . ,

fm(x̄)

gm(x̄)

)
satisfies �(ȳ) �

�(y) for every y such that yi = fi(x)

gi(x)
, i = 1, . . . , m, with x ∈ D, and since �(.)

is increasing, this implies �(ȳ) � �(y) ∀y ∈ G, i.e. ȳ solves (MP). Conversely,
if ȳ solves (MP) then ȳi � fi(x̄)

gi(x̄)
, i = 1, . . . , m, for some x̄ ∈ D, and since �(.) is

increasing, �
(

f1(x̄)

g1(x̄)
, . . . ,

fm(x̄)

gm(x̄)

)
� �(ȳ) � �(y) for every y ∈ G, and hence, for

UNIFIED MONOTONIC APPROACH TO GENERALIZED LINEAR FRACTIONAL PROGRAMMING 235

every y such that yi = fi (x)

gi(x)
, i = 1, . . . , m, with x ∈ D, implying that x̄ solves

(P). �
Thus the original problems (P), (Q) in Rn can be reduced to the above problems
(MP), (MQ) in Rm+, with m usually much smaller than n. By specializing then the
‘polyblock approximation method’ developed in [22] to (MP), we obtain a unified
method for solving any problem of the form (P). Furthermore, as we shall show
later, a problem (MQ) can be transformed into a problem (MP). Therefore, the
same method applies also to any problem of the form (Q). This unified method
turns out to be quite practical for all problems under consideration, independently
of the specific form of �(.) in each of them.

4. Proposed Solution Method

4.1. PROBLEM (MP)

Consider first the problem (MP):

max{�(y)| y ∈ G} (MP)

where G = {y ∈ Rm+|yi � fi (x)

gi(x)
∀i = 1, . . . , m, x ∈ D} is contained in the box

[0, b] with b satisfying (16), i.e.

bi = max
x∈D

fi(x)

gi(x)
i = 1, . . . , m.

In view of the assumption (13), we can select a vector a ∈ Rm++ such that

ai = min
x∈D

fi(x)

gi(x)
> 0 i = 1, . . . , m, (17)

so the search can be restricted to the set G ∩ L, where

L = {y ∈ Rm
+| y � a}. (18)

(One can assume ai < bi, i = 1, . . . , m because if ai = bi for some i then
fi(x)/gi(x) = ai ∀x ∈ D and �(.) reduces to a function of m− 1 variables.)

Let γ be the optimal value of (MP) (or (P)) (γ > 0 since � : Rm+ → R++).
Given a tolerance ε � 0, we say that a vector ȳ ∈ G ∩ L is an ε-optimal solution
of (MP) if γ � (1+ ε)�(ȳ), or equivalently, if �(y) � (1+ ε)�(ȳ) ∀y ∈ G∩L.

Then the vector x̄ ∈ D satisfying ȳi = fi(x̄)/gi(x̄), i = 1, . . . , m, is called an
ε-optimal solution of (P). We now present a procedure for finding an ε-optimal
solution.

Clearly if z /∈ L then the box [0, z] contains no point of L, hence no point of
G∩L. Keeping this in mind, observe that by Proposition 2, if we take a polyblock

236 NGUYEN THI HOAI PHUONG AND HOANG TUY

P1 ⊃ G with vertex set T1 ⊂ L, then the maximum of �(y) over P1 is achieved
at some proper vertex z1 of P1. Since z1 ∈ L if this vertex z1 happens to belong to
G then it solves (MP); on the other hand, if z1 /∈ G then by Proposition 3 we can
construct a smaller polyblock P2 still containing G∩L but excluding z1. Repeating
this procedure for the new polyblock P2, and continuing as long as needed, we will
generate a nested sequence of polyblocks enclosing G ∩ L :

P1 ⊃ P2 ⊃ . . . ⊃ G ∩ L. (19)

The problem will be solved if we can construct this sequence in such a manner that
either zk ∈ G ∩ L for some k, or

max{�(y)| y ∈ Pk} ↘ max{�(y)| y ∈ G ∩ L}. (20)

In the former case zk is an exact optimal solution of the problem, while in the latter
case, by stopping the sequence at some sufficiently advanced iteration k we will
obtain an ε-optimal solution.

Let us examine how such a sequence can be constructed. Starting with the
polyblock P1 := [0, b] ⊃ G ∩ L, whose proper vertex set is T1 = {b}, suppose
that P1, . . . , Pk satisfying (19) have already been constructed. Let Tk be the proper
vertex of Pk. By deleting all z ∈ Tk such that z /∈ L we can assume Tk ⊂ L (see
(18)). Then the point

zk ∈ argmax{�(z)|z ∈ Tk}
is a maximizer of �(y) over Pk. Let

yk = πG(z
k),

so that max{yk
i − fi(x

k)/gi(x
k)| i = 1, . . . , m} = 0 for some xk ∈ D. Define ỹk

such that ỹk
i = fi(x

k)/gi(x
k), i = 1, . . . , m. This vector ỹk is a feasible solution

of (MP) with objective function value �(ỹk) � �(yk) and it can be compared
with previously known feasible solutions to determine the current best solution
CBS= ȳk and the current best value CBV = �(ȳk). We then construct Pk+1 as
follows.

Select a subset T ′
k of Tk such that zk ∈ T ′

k ⊂ {z ∈ Tk| z > yk}, and let T ∗
k be

the set obtained from Tk by replacing each z ∈ T ′
k with the points {z∗1, . . . , z∗m}

defined by

z∗i = z− (zi − yk
i)e

i i = 1, . . . , m. (21)

From T ∗
k remove all improper elements as well as all points not belonging to L,

and let T̃k be the remaining set. By Proposition 3 the polyblock with vertex set T̃k

still contains G ∩ L but is smaller than Pk and no longer contains zk.

To further reduce the enclosing polyblock, observe that if every z ∈ T̃k satisfies
�(z) � (1 + ε)CBV then �(y) � (1 + ε)CBV ∀y ∈ G ∩ L (by monotonicity of

UNIFIED MONOTONIC APPROACH TO GENERALIZED LINEAR FRACTIONAL PROGRAMMING 237

�), and consequently, CBV is the ε-optimal value and CBS an ε-optimal solution.
Therefore we check whether �(z) � (1 + ε)CBV for every z ∈ T̃k. Let Tk+1 be
the set that remains from T̃k after dropping all z that satisfy that condition and also
all z ∈ T̃k \ L.

If Tk+1 = ∅, we stop: �(y) � (1 + ε)CBV ∀y ∈ G ∩ L, so ȳk with
�(ȳk) = CBV is an ε-optimal solution of (MP). The vector x̄k ∈ D such that
ȳk
i = fi(x̄

k)/gi(x̄
k), i = 1, . . . , m, is then an ε-optimal solution of (P).

On the other hand, if Tk+1 �= ∅, then the polytope Pk+1 with proper vertex set
Tk+1 will still contain at least an ε-optimal solution, i.e. will satisfy the condition
(19) in which G ∩ L is replaced by a set containing at least an ε-optimal solution.
So we can go to the next iteration and continue the procedure.

In a formal way we can thus state

Algorithm 1 (tolerance ε � 0).
Step 0. (Initialization) Start with T1 = T̃1 = {b}. Set k = 1.
Step 1. Select

zk ∈ argmax{�(z)|z ∈ T̃k}

Compute yk = πG(z
k) with xk ∈ D satisfying yk

i � fi(x
k)/gi(x

k) ∀i =
1, . . . , m. Define ỹk ∈ G by ỹk

i = fi(x
k)/gi(x

k), i = 1, . . . , m (so ỹk ∈
G ∩ L, i.e. is feasible). Determine the new current best solution ȳk (with
corresponding x̄k ∈ D) and the new current best value CBV = �(ȳk),

by comparing ỹk with ȳk−1 (for k = 1 set ȳ1 = ỹ1, x̄1 = x1).

Step 2. Select a set T ′
k ⊂ Tk such that zk ∈ T ′

k ⊂ {z| z > yk} and let T ∗
k be the set

obtained from Tk by replacing each z ∈ T ′
k with the points {z∗1, . . . , z∗m}

defined by (21).
Step 3. From T ∗

k remove all improper elements, all z ∈ T̃k such that �(z) �
(1+ε)CBV and also all z /∈ L. Let Tk+1 be the set of remaining elements.
If Tk+1 = ∅, terminate: ȳk is an ε-optimal solution of (MP), and the
corresponding x̄k an ε-optimal solution of (P).

Step 4. If Tk+1 �= ∅, set k ← k + 1 and return to Step 1.

THEOREM 2. Algorithm 1 can be infinite only if ε = 0 and in this case it gener-
ates an infinite sequence {x̄k} every cluster point of which is an optimal solution of
(P).

Proof. This follows from Theorem 1 in [22]. For completeness let us sketch the
proof. If the algorithm is infinite it generates an infinite sequence {zk} such that

z1 = b, zk+1 = zk − (zkik − yk
ik
)eik ;

yk = πG(z
k), ik ∈ {1, . . . , m}. (22)

238 NGUYEN THI HOAI PHUONG AND HOANG TUY

Since z1 � z2 � · · · � zk � · · · � a > 0 this sequence has a limit z̄ = limk→∞ zk,

and consequently, limk→∞ ‖zk+1 − zk‖ = 0. From (22) we have zk+1
ik

= yk
ik
, hence,

zkik − yk
ik
= zkik − zk+1

ik
� ‖zk − zk+1‖ → 0 (k → +∞). (23)

But by construction, zkik−yk
ik
= λkz

k
ik
, while zk � a > 0, therefore zkik−yk

ik
� λkaik .

This, together with (23), implies λk → 0, i.e.

zk − yk → 0 (k → ∞). (24)

Hence, any cluster point z̄ of {zk} satisfies z̄ ∈ G ∩ L. Since �(zk) � �(y) ∀y ∈
G ∩ L, it follows that �(z̄) � �(y) ∀y ∈ G ∩ L, i.e z̄ is an optimal solution.
Furthermore, since �(zk) � �(ȳk) � �(ỹk) � �(yk), it follows from (24) that
any cluster point of the sequence {ȳk} is also an optimal solution. Hence, any cluster
point of the sequence {x̄k} is an ε-optimal solution of (P). �
REMARK 2. In Step 2 of the Algorithm some freedom exists for the selection
of T ′

k . If T ′
k = {zk} is taken as in the Basic Polyblock Algorithm in [22] there are

at most m new vertices but the polyblock Pk+1 may sometimes be too rough an
approximation of G. On the other hand, if a larger set T ′

k is selected, the polyblock
Pk+1 better approximates G, but too many new vertices may appear. This flexibility
can be exploited for the efficiency of the procedure.

4.2. PROBLEM (MQ)

Consider now the problem (MQ):

min{�(y)| y ∈ H } (MQ)

where H = {y ∈ Rm+| yi � fi(x)

gi(x)
∀i = 1, . . . , m, x ∈ D}.

Since an optimal solution must lie in the box [0, b], with bi = maxx∈D fi(x)

gi(x)
, i =

1, . . . , m, by setting �̃(y) = −,(b − y),H - = b − H ∩ [0, b] we can rewrite
(MQ) as

max{,(y)| y ∈ H-} (MQ-)

Clearly ,(y) is an increasing function on [0, b] and H- is a normal set in [0, b],
so the problem (MQ-) has now the same form as (MP) and hence can be solved by
the same method.

A set H ⊂ [0, b] such that 0 � y′ � y /∈ H always implies y′ /∈ H is called a
reverse normal set in [0, b]. For any finite set T ⊂ [0, b] the set Q = ∪z∈T [z, b] is
called a reverse polyblock of vertex set T . A vertex z ∈ T is called proper if there
is no z′ ∈ T such that z′ �= z and z′ � z. For any z ∈ [0, b] we define

ρH(z) = b − µ(b − z), µ = max{α > 0| b − α(b − z) ∈ H }. (25)

UNIFIED MONOTONIC APPROACH TO GENERALIZED LINEAR FRACTIONAL PROGRAMMING 239

Clearly, z /∈ H if and only if µ < 1 and then ρH(z) ∈ ∂−H, where ∂−H denotes
the lower boundary of H (set of all points y ∈ H such that y′ /∈ H for all y′ < y).

The counterpart to Proposition 3 is now:

PROPOSITION 4. Let H be a closed reverse normal set with b ∈ intH , where
b ∈ Rm++ and let Q ⊂ [0, b] be a reverse polyblock containing H ∩ [0, b] and with
proper vertex set T . For a given ẑ ∈ T \ H with ρH(ẑ) = ŷ, let T ′ be any subset
of T such that ẑ ∈ T ′ ⊂ {y| y < ŷ}, and let T ∗ be the set obtained from T by
replacing each z ∈ T ′ with {z∗1, . . . , z∗m} where z∗i are given by

z∗i = z+ (yi − zi)e
i i = 1, . . . , m.

Then the reverse polyblock Q∗ with vertex set T ∗ satisfies (H ∩ [0, b]) ⊂ Q∗ ⊂
Q \ {ẑ}.
In terms of H and �(y) the polyblock method for solving (MQ) consists in con-
structing a nested sequence of reverse polyblocks Q1 := [0, b] ⊃ Q2 ⊃ · · · ⊃
H ∩ [0, b] such that

min{�(y)| y ∈ Qk} ↗ min{�(y)| y ∈ H }.
Noting that H- = {y| yi � bi − fi(x)/gi(x)}, and maxx∈D{bi − fi(x)/gi(x)} =
bi − minx∈D{fi(x)/gi(x)} we see that the search can be restricted to the set

H ∩K, K = {y ∈ Rm
+| y � b̄} (26)

where b̄ is defined by

b̄i = bi − min
x∈D

fi(x)

gi(x)
, i = 1, . . . , m. (27)

Algorithm 2 (tolerance ε � 0)
Step 0. (Initialization) Start with T1 = T̃1 = {0}. Set k = 1.
Step 1. Select

zk ∈ argmin{�(z)|z ∈ T̃k}
Compute yk = ρH(zk) with xk ∈ D satisfying yk

i � fi(x
k)/gi(x

k) ∀i =
1, . . . , m. Define ỹk such that ỹk

i = fi(x
k)/gi(x

k), i = 1, . . . , m. De-
termine the current best solution ȳk and the current best value CBV =
�(ȳk), by comparing ỹk with ȳk−1.

Step 2. Select a set T ′
k ⊂ Tk such that zk ∈ T ′

k ⊂ {y| y < yk} and let T ∗
k be the set

obtained from Tk by replacing each z ∈ T ′
k with the points {z∗1, . . . , z∗m}

where

z∗i = z+ (yk
i − zi)e

i i = 1, . . . , m.

240 NGUYEN THI HOAI PHUONG AND HOANG TUY

Step 3. From T ∗
k remove all improper elements, all z such that �(z) � (1 −

ε)CBV and all z /∈ K. Let Tk+1 be the set of remaining elements. If
Tk+1 = ∅, terminate: ȳk is an ε-optimal solution of (MQ) and the corres-
ponding x̄k is an ε-optimal solution of (Q).

Step 4. If Tk+1 �= ∅, set k ← k + 1 and return to Step 1.

THEOREM 3. Algorithm 2 can be infinite only if ε = 0 and in this case it gener-
ates an infinite sequence {xk}, every cluster point of which is an optimal solution
of (Q).

Proof. This follows from Theorem 2. �

5. Implementation Issues

5.1. COMPUTING πg(.) OR ρh(.)

One fundamental operation involved in Step 1 of Algorithm 1 (Algorithm 2, resp.)
is the computation of the point πG(z) (ρH (z), resp.), for a given z.

Recall from (5) that πG(z) = λz where λ is defined as follows

λ = max{α| αz ∈ G}
= max{α| α � min

i=1,... ,m

fi(x)

zigi(x)
, x ∈ D}

= max
x∈D

min
i=1,... ,m

fi(x)

zigi(x)
. (28)

Therefore, computing πG(z) amounts to solving a problem (3). This can be done,
e.g., by applying the following method adapted from [8].

Consider the subproblem

R(α) := max
x∈D

min
i=1,... ,m

(fi(x)− αzigi(x)) LP[α]

equivalent to the linear program

max{t| t � fi(x)− αzigi(x) (i = 1, . . . , m), x ∈ D}.
PROPOSITION 5.

(i) We have R(α) = 0 ⇔ λ = α; R(α) < 0 ⇔ λ < α; R(α) > 0 ⇔ α < λ.

(ii) Let {αs, s = 1, 2, ...} be a sequence such that R(α1) > 0, α̃s = mini
fi (x

s)

zigi(xs)
,

αs+1 = (1 + η)α̃s, where xs is an optimal solution of LP[αs] and η ∈ (0, 1) is
a constant. Then αs < αs+1, while R(αs) > R(αs+1) and the smallest s such
that R(αs+1) < 0, satisfies α̃s � λ < (1 + η)α̃s.

UNIFIED MONOTONIC APPROACH TO GENERALIZED LINEAR FRACTIONAL PROGRAMMING 241

Proof. (i) Clearly R(α) > 0 ⇔ maxx∈D mini[fi(x)−αzigi(x)] > 0 ⇔ maxx∈D
mini

fi (x)

zigi (x)
> α ⇔ λ > α. Similarly, R(α) < 0 ⇔ λ < α. Hence R(α) = 0 ⇔

α = λ.

(ii) If R(αs) > 0 then maxx∈D mini(fi(x) − αszigi(x)) > 0, i.e. mini
fi(x)

zigi(x)
>

αs ∀x ∈ D, hence α̃s := mini
fi(x

s)

zigi(xs)
> αs, which in turn implies that αs+1 >

αs, R(αs+1) < R(αs). Since R(α1) > 0 the construction of the sequence
{α1, α2, . . . } can continue as long as R(αs) > 0. But, since αs+1 > (1 + η)αs

the fact 0 < αs < λ by (i) as long as R(αs) > 0 implies that one must have
R(α̃s) � 0 > R(αs+1) for some s. Then α̃s � λ < αs+1 by virtue of (i). �
For a given z ∈ [0, b] with πG(z) = λz and for a given tolerance η > 0, define
y ≈ πG(z) to be a vector y satisfying

y = (1 + η)λ̂z, λ̂ � λ � (1 + η)λ̂ (29)

Proposition 5 justifies the following procedure for computing y ≈ πG(z).

PROCEDURE πG(z)

1. With α1 = 0 solve LP[α1] to obtain an optimal solution x1 of it. Define α̃1 =
mini

fi(x
0)

zigi(x0)
, s = 1.

2. With αs+1 = α̃s(1+η) solve LP[αs+1] to obtain an optimal solution xs+1 of it. If
R(αs+1) � 0, terminate: y = αs+1z and ỹs

i = fi(x
s+1)/gi(x

s+1), i = 1, . . . , m.

3. If R(αs+1) > 0, set α̃s+1 = mini
fi (x

s+1)

zigi (x
s+1)

, increment s and go back to Step 2.
To guarantee termination of Algorithm 1 the tolerance η in computing y ≈ πG(z)

must be suitably chosen. In fact, at iteration k of Algorithm 1, for yk = πG(z
k) we

have zk − yk → 0 (see (24)), so the termination criterion �(zk)− (1 + ε)CBV �
�(zk) − (1 + ε)�(yk) � 0 is satisfied when k is sufficiently large. This is true if
yk = πG(z

k) exactly. Since however, we only have yk ≈ πG(z
k), this termination

criterion may never occur if the tolerance η is taken too large.
To address this issue observe that if η is such that y ≈ πG(z) (see (29)) satisfies

�((1 + η)λ̂z) < (1 + ε/2)�(λ̂z). (30)

then �(y) � (1+ ε/2)�(πG(z)) (because λ̂z � πG(z) � y := (1 + η)λ̂z) and for
k so large that �(zk)−�(yk) � ε

2�(πG(z
k)) (which occurs because zk −yk → 0)

we shall have

(1 + ε)CBV � (1 + ε)�(ỹk) � (1 + ε)�(πG(z
k))

� (1 + ε/2)�(πG(z
k))+ (ε/2)�(πG(z

k))

� �(yk)+ (ε/2)�(πG(z
k)) � �(yk)+ [�(zk)−�(yk)]

= �(zk),

i.e., the termination criterion will hold (in the previous argument we have used the
fact that �(ỹk) � �(πG(z

k))).

242 NGUYEN THI HOAI PHUONG AND HOANG TUY

One way to ensure (30) is to modify Step 2 of the above procedure as follows
Step 2. With αs+1 = α̃s(1 + η) solve LP[αs+1] to obtain an optimal solution

xs+1 of it. If R(αs+1) � 0 and �(αs+1z) � (1+ε/2)�(α̃sz), terminate: y = αs+1z

and ỹs
i = fi(x

s+1)/gi(x
s+1), i = 1, . . . , m. If R(αs+1) � 0 but �(αs+1z) >

(1+ ε/2)�(α̃sz), set η ← η/2, α̃s+1 = mini
fi (x

s+1)

zigi(xs+1)
, increment s and go back to

Step 2.
In many cases it is also possible to select η in terms of ε. For instance, suppose

the function �(.) is positively homogenous of degree θ, i.e., satisfies �(αy) =
αθ�(y) ∀y ∈ Rm+, ∀α > 0 (this holds for �(z) = ∑m

i=1 zi with θ = 1, and

for �(z) = 6m
i=1zi with θ = m). In such cases if we take η � (1 + ε/2)

1
θ − 1,

then R(αk(1 + η)) � 0 will imply that �((1 + η)αz) = (1 + η)θ�(αz) � [(1 +
ε/2)

1
θ]θ�(αz) = (1 + ε/2)�(αz). Practically, it suffices to take η = ε/2m.

The computation of ρH(.) is analogous to that of πG(.). Given the reverse
normal set H defined by (15) and a vector b ∈ H the computation of ρH(z) =
z+ µ(b − z) for any z ∈ [0, b] \H amounts to computing

µ = max{α| b − α(b − z) ∈ H }
= max{α| bi − α(bi − zi) � fi(x)

gi(x)
(i = 1, . . . , m), x ∈ D}

= max
x∈D

min
i=1,... ,m

bigi(x)− fi(x)

(bi − zi)gi(x)

(31)

So computing ρH(z) again amounts to solving a problem (3).
Define the subprogram

S(α) := max
x∈D

min
i=1,... ,m

[bigi(x)− fi(x)− α(bi − zi)gi(x)] LQ[α]

or, equivalently,

max{t| t � bigi(x)− fi(x)− α(bi − zi)gi(x) (i = 1, . . . , m), x ∈ D}.
Analogously to Proposition 5 one can prove that:

(i) S(α) = 0 ⇔ α = µ; S(α) > 0 ⇔ α < µ; S(α) < 0 ⇔ α > µ;
(ii) Let {αs} be a sequence such that S(α1) > 0, α̃s = mini

bigi(x
s)−fi(x

s)

(bi−zi)gi(x
s)

, αs+1 =
(1 + η)α̃s, where xs is an optimal solution of LQ[αs] and η ∈ (0, 1) is a constant.
Then there exists s such that S(αs) � 0 but S(αs+1) < 0, and then α̃s � µ <

(1 + η)α̃s .

For any given z ∈ [0, b] with ρH(z) = b−µ(b− z) write y ≈ ρH(z) to denote
a point y satisfying

y = b − (1 + η)µ̂(b − z), µ̂ � µ � (1 + η)µ̂, (32)

The above stated properties justify the next procedure for computing y ≈ ρH(z).

PROCEDURE y ≈ ρH(z)

UNIFIED MONOTONIC APPROACH TO GENERALIZED LINEAR FRACTIONAL PROGRAMMING 243

1. With α1 = 0 solve LP[α1] to obtain an optimal solution x1 of it. Define α̃1 =
mini

bigi (x
0)−fi (x

0)

(bi−zi)gi(x
0)

, s = 1.

2. With αs+1 = α̃s(1 + η) solve LQ[αs+1] to obtain an optimal solution xs+1 of
it. If S(αs+1) � 0 and �(b − αs+1(b − z)) � (1 + ε/2)�(b − α̃s(b − z)),

terminate: y = b − αs+1(b − z) and ỹs
i = bigi (x

s+1−fi(x
s+1)

(bi−zi)gi(xs+1)
, i = 1, . . . , m.

If S(αs+1) � 0 but �(b − αs+1(b − z)) > (1 + ε/2)�(b − α̃s(b − z)), set
η ← η/2, α̃s+1 = mini

bigi(x
s+1−fi (x

s+1)

(bi−zi)gi(x
s+1)

, increment s and go back to Step 2.

3. If S(αs(1 + η)) > 0, set α̃s+1 = mini
bigi (x

s+1)−fi(x
s+1)

(bi−zi)gi(xs+1)
, increment s and go back

to Step 2.

5.2. REMOVING IMPROPER ELEMENTS

In Step 3 of Algorithm 1, the improper elements of T ∗
k can be removed by using

the following rule which can be derived from the rule indicated in [22]:
For every pair (z, z′) such that z ∈ Tk, z

′ ∈ T ′
k and z � yk do: if z′j � zj

for all j �= i then remove z
′.i . (Indeed, z

′.i � z.i because z
′.i
i = yk

i = z.ii while
z
′.i
j = z′j � zj = z.ij ∀j �= i).

An analogous rule (with obvious modifications) can be used for removing im-
proper elements from T ∗

k in Step 3 of Algorithm 2.

5.3. ALLEVIATING STORAGE PROBLEMS

To avoid storage problems connected with the growth of the set Tk as the algorithm
proceeds, and also to preclude possible jams, it may be useful to restart the al-
gorithm whenever |Tk| > L or x̄k = x̄k−h where L, h are user supplied fixed
numbers. For instance, Step 4 of Algorithm 1 should be modified as follows:

Step 4. If Tk+1 �= ∅ and |Tk+1| < L or x̄k+1 �= x̄k−h then set k ← k + 1 and
return to Step 1; otherwise go to Step 5.

Step 5. Redefine yk ≈ πG(z
k), Tk+1 = {b − (bi − yk

i)e
i, i = 1, . . . , m} (i.e.

Pk+1 = [0, b] \ (yk, b] and return to Step 1.
Analogously, Step 4 of Algorithm 2 should be modified as follows:

Step 4. If |Tk+1| < L or x̄k �= x̄k−h then set k ← k + 1 and return to Step 1;
otherwise go to Step 5.

Step 5. Redefine yk ≈ ρH(zk), Tk+1 = yk
i .e

i , i = 1, . . . , m} (i.e. Pk+1 =
[0, b] \ [0, yk) and return to Step 1.

6. Modified Variants

Several modified variants of the basic method can be proposed to speed up the
convergence and better handle large scale problems.

244 NGUYEN THI HOAI PHUONG AND HOANG TUY

6.1. FLEXIBLE SELECTION RULE

In some problems, the function �(y) may be such that �(y) > �(y′) implies
λG(y) < λG(y

′), where λG(z) = max{α| αz ∈ G} (see (28)). In such cases the
criterion zk ∈ argmax{�(z)| z ∈ T̃k} used in Step 1 of Algorithm 1 may lead
to selecting the point z ∈ T̃k that achieves the smallest value of λG(z), i.e. the
point that lies the farthest from the set G. Since the convergence speed of the
algorithm depends on how fast the point zk is brought close to G, this fact may
result in a slow convergence. Furthermore, when m is large, the rapid growth of
the set Tk may pose serious storage problems while slowing down the procedure.
To get round these difficulties, a flexible selection criterion is suggested which still
ensures convergence of the algorithm, provided ε > 0.

Observe that the standard selection criterion zk ∈ argmax{�(z)| z ∈ T̃k} is only
necessary to prove convergence for ε = 0, i.e., when we want the algorithm to
generate an infinite sequence converging to an exact optimal solution. In fact, close
scrutiny of the proof of Theorem 2 shows that this criterion is needed only to ensure
that every point zk satisfies �(zk) � �(z) ∀z ∈ T̃k, hence �(zk) � �(y) ∀y ∈
G ∩ L, in order to conclude that any cluster point of the sequence {zk} is an exact
optimal solution.

In practice, however, what we often need is only an ε-optimal solution with
ε > 0. In that case, the selection criterion for zk may influence the convergence
speed but not the convergence status of the algorithm. To see this, suppose the
algorithm is infinite. Then it must generate at least one infinite sequence {zk} sat-
isfying (22), hence, satisfying zk − yk → 0 (k → +∞) (see (24)). But in view of
the deletion criterion in Step 3 every zk satisfies �(zk)−CBV (k)

CBV (k)
> ε, where CBV (k)

denotes the current best value at iteration k. Furthermore, since yk � ỹk and ỹk

is feasible, it follows that CBV (k) � �(ỹk) � �(yk), hence �(zk) − �(yk) �
�(zk) − �(ỹk) � �(zk) − CBV (k) > εCBV (k). The fact zk − yk → 0 then
implies that �(zk) −�(yk) → 0, and since CBV (k) � CBV (1) > 0, we arrive
at a contradiction: 0 � εCBV (1) > 0 as k → ∞. Therefore, finiteness of the
algorithm is guaranteed.

Algorithm 1 can thus be applied, using any rule for selecting Mk in Step 1. For
instance, computational experiments have shown that in most cases with ε > 0
the criterion Mk ∈ argmin{∑m

i=1 zi| z ∈ T̃k} performs better than the standard
one. Also, the freedom in selecting Mk can sometimes be exploited to enhance
efficiency: when the algorithm seems to be jamming, one can change the search
direction by a proper selection of zk.

The same remark applies obviously to Algorithm 2.

6.2. SUCCESSIVE IMPROVEMENT PROCEDURE

As a step towards solving a global optimization problem like (MP) it is often useful
to consider the following feasibility problem

UNIFIED MONOTONIC APPROACH TO GENERALIZED LINEAR FRACTIONAL PROGRAMMING 245

FP(r): Given a value r ∈ [�(a),�(b)], find a feasible solution z of (MP)
such that �(z) > r + εr.

The infeasibility of this problem would mean that �(z) � r+εr ∀z ∈ G∩L, hence
γ−r

r
� ε, i.e., that r is an ε-optimal value. Therefore, if an efficient procedure is

available for solving FP(r) for any given r ∈ [�(a),�(b)], we can proceed as
follows to find an ε-optimal solution of (MP).

Successive Improvement Procedure
1. Set r = �(a).

2. Solve FP(r). If FP(r) is feasible, i.e. a feasible solution z[r] is found such that
�(z[r]) > r+εr then set CBS = z[r] and go to Step 2. If FP(r) is infeasible with
r = �(a) the problem (CP) is infeasible. If FP(r) is infeasible with r > �(a),

then CBS is an ε-optimal solution of (CP).
3. Reset r ← �(z[r]), L ← L ∩ {�(z) � r + εr} and go back to Step 0.

The rationale of this approach is that since the feasibility problem FP(r) does
not involve an objective function, we can solve it by a variant of Algorithm 1 where
the criterion for selecting zk in Step 1 is taken so as to force zk to approach G

rapidly. For example the criterion zk ∈ argmin{∑m
i=1 zi| z ∈ T̃k} would be suitable

for that purpose. Using this criterion to solve FP(r) and incorporating FP(r) in
this successive improvement procedure leads to the following modifed version
of Algorithm 1 which is a kind of depth-first search on the graph formed by the
vertices of the polyblocks that might be generated.

Define Lr = {z| z � a,�(z) � r+εr}. For convenience let us agree to say that,
for a given z with y ≈ πG(z), the point z∗i = z− (zi − yk

i)e
i, i ∈ {1, . . . , m}), is

the i-th child of z (and z is the “father” of every z∗i). At each stage of the algorithm,
every z ∈ [0, b] is assigned a set J (z) ⊂ I := {1, . . . , m} of indices i ∈ I still
“active” at this stage.

Algorithm 1∗
Step 0. Set r = �(a). Let z0 = b, T0 = {z0}, J (z0) = I := {1, . . . , m}, k = 1.
Step 1. Let z∗ be the last element of Tk−1. Compute y∗ ≈ πG(z

∗) and

z∗i = z∗ − (z∗i − y∗
i)e

i, i = 1, . . . , m

If Vk = {z∗i| i ∈ J (z∗), z∗i ∈ Lr} �= ∅, go to Step 2.
If Vk = ∅, go to Step 3.

Step 2. Compute zk ∈ argmin{∑m
i=1 zi| z ∈ Vk} and yk ≈ πG(z

k) with xk ∈
D satisfying maxi=1,... ,m{yk

i − fi(x
k)/gi(x

k)} = 0. Define ỹk such that
ỹk
i = fi(x

k)/gi(x
k), i = 1, . . . , m. If �(ỹk) > r + εr, then go to Step

4. Otherwise let zk be the ik-th child of z∗ (i.e. zk = z∗ik). Remove ik
from J (z∗) and set J (zk) = I. Define Tk to be the ordered set obtained by
appending zk to Tk−1 so that it becomes the last member of Tk. Increment
k and go back to Step 1.

246 NGUYEN THI HOAI PHUONG AND HOANG TUY

Step 3. If z∗ = b, terminate: CBS is an ε-optimal solution of (MP) if it is defined;
the problem is infeasible if CBS is not defined.
If z∗ �= b, let z∗∗ be the father of z∗ and let z∗ be the i∗-th child of z∗∗.
Remove i∗ from J (z∗∗), set Tk = Tk−1 \ {z∗}, increment k and go back to
Step 1.

Step 4. Let zk be the ik-th child of z∗ (i.e. zk = z∗ik). Two options:
(a) Define CBS = ỹk, reset r ← �(ỹk), remove ik from J (z∗) and

define Tk to be the ordered set of all z ∈ Tk−1 such that �(z) �
r + εr. Increment k and go back to Step 1.

(b) Define CBS = ỹk, reset r ← �(ỹk), L ← L∩{z|�(z) � r+εr}
and go back to Step 0.

PROPOSITION 6. Algorithm 1∗ terminates after finitely many steps, yielding an
ε-optimal solution or establishing the infeasibility of the problem.

Proof. It suffices to show that if the Algorithm terminates at a Step 3 with z∗ = b

while no CBS has been defined yet then FP(r) is infeasible. At any iteration k

of the procedure let, for every z ∈ Tk, U(z) denote the set of all children of z

that have index in J (z) and belong to Lr, and let V = ∪z∈TkU(z). Then the set
;r = {z ∈ Lr | �(z) � (1 + ε)�(πG(z)) is contained in the polyblock with vertex
set V. But the event z∗ = b in Step 3 means that Tk = {b}, U(b) = ∅, hence
V = ∅. Therefore, ;r = ∅, i.e. (CP) is infeasible. �
REMARK 3. An advantage of Algorithm 1∗ is that at each iteration the set Tk

either increases at most by 1, or decreases.
Analogously, an Algorithm 2∗ may be formulated for problem (Q) which pro-

ceeds by successive improvement of the incumbent solution through solving feas-
ibility problems of the form FQ(r): Find a feasible solution z of (MQ) such that
�(z) � r − εr. (the infeasibility of this problem would mean that r is an ε-optimal
value).

6.3. BRANCH AND BOUND VARIANT

The basic Algorithm 1 can be interpreted as a rectangular branch an bound proced-
ure in which the root of the tree that describes the branching scheme is T1 = {b}
(the box [0, b] contains all feasible solutions) and the active nodes at iteration k

are represented by the elements of Tk (each element z ∈ Tk represents a box [0, z]
containing a portion of the feasible set that remains to be explored).

An attractive feature of this branch and bound procedure is that an upper bound
is readily available for each node z ∈ Tk, namely �(z). However, since each node
has many (m) successors and the boxes represented by the active nodes at each
iteration form a covering rather than a partition of the initial box [a, b], this may
cause slow convergence when m is not small. To alleviate these diffficulties, a
branch and bound procedure in a more usual sense can be proposed, in which

UNIFIED MONOTONIC APPROACH TO GENERALIZED LINEAR FRACTIONAL PROGRAMMING 247

branching is performed by subdividing the current box into two subboxes, and an
upper bound α(M) over a box M = [p, q] ⊂ [a, b] is computed according to a
subroutine described below.
PROCEDURE FOR COMPUTING α(M)

The subroutine involves two stages: 1) reducing the box M, by cutting away
useless portions; 2) applying a truncated version of Algorithm 1 to the reduced
box.
I. Box reduction (preprocessing):

Let δ > 0 be a chosen tolerance. Compute

ξi = sup{ξ > 0| p + ξei ∈ G, pi + ξ � qi}, q ′ = p +
s∑

i=1

ξie
i (33)

ζi = sup{ζ > 0| q ′ − ζei ∈ L, pi � q ′
i − ζ }, p′ = q ′ −

s∑
i=1

ζie
i . (34)

If p′ /∈ G or q ′ /∈ L, then terminate: M contains no feasible point, so α(M) = −∞.

If q ′ ∈ G and q ′ ∈ L, then terminate: α(M) = �(q ′),
If p′ ∈ G and q ′ ∈ L, while p′ − p > δ then reset [p, q] ← [p′, q ′] and repeat.
If p′ ∈ G and q ′ ∈ L, while p′ − p � δ then reset [p, q] ← [p′, q ′] and stop.

II. Bound Computation
0. Let [p, q] be the last box obtained after “preprocessing”. Select νmax (max-

imal number of iterations to be executed).
If p /∈ G then [p, q] ∩G ∩ L = ∅, so α(M) = −∞.

If p ∈ G, and q ∈ G then α(M) = �(q), y(M) = q (actually �(q) is then the
exact maximum of �(y) over the feasible solutions in [p, q]).
If p ∈ G and z1 = q /∈ G, set ν = 1 (ν is the iteration counter for the subroutine).

1. Compute yν ≈ πG(z
ν) and let ỹν = (f1(x

ν)/g1(x
ν), . . . , fm(x

ν)/gm(x
ν))

where xν ∈ D is the point satisfying maxi=1,... ,m[yν
i − fi(x

ν)/gi(x
ν)] = 0. Use ỹν

to update CBV. Compute

zν,i = zν − (zνi − yν
i)e

i, i = 1, . . . , n.

Let T ′
ν = (Tν \ {zν}) ∪ {zν,1, . . . , zν,n}.

2. Let Tν+1 be the set that remains from T ′
ν after removing all improper elements

and all z such that �(z) � CBV + ε. If Tν+1 = ∅, set α(M) = CBV + ε.

Otherwise, compute

zν+1 ∈ argmax{�(z)| z ∈ Tν+1}
If ν = νmax set α(M) = �(zν+1), z(M) = zν+1, y(M) = ỹν+1. Otherwise, set
ν ← ν + 1 and return to Step 1.

248 NGUYEN THI HOAI PHUONG AND HOANG TUY

REMARK 4. The numbers δ (tolerance in box reduction) and νmax should be
flexibly chosen so as to require only a relatively small computational cost.

Algorithm 1∗∗
Step 0. Start with P 1 = S1 = {M1 = [a, b]}. Set k = 1.
Step 1. For each box M ∈ Pk compute α(M) and y(M) (if α(M) > −∞).

Update the incumbent by setting CBS = ȳk equal to the best among all
y(M),M ∈ Pk. Let CBV = �(ȳk).

Step 2. Delete every M ∈ Sk such that α(M) � CBV + ε. Let Rk be the
collection of remaining members of Sk. If Rk = ∅, then terminate: ȳk

is an ε-optimal solution.
Step 3. Select Mk ∈ argmax{α(M)| M ∈ Rk}. Let yk = y(Mk). Choose jk ∈

argmaxi{qi − pi} and divide Mk into two subboxes via the hyperplane
yjk = (pk

jk
+ qk

jk
)/2. Let Pk+1 be the partition of Mk.

Step 4. Set Sk+1 = (Rk \ {Mk}) ∪ Pk+1. Set k ← k + 1 and go back to Step 1.

The convergence of this algorithm is guaranteed because the subdivision pro-
cess is exhaustive and the bounding is consistent (see, e.g., [20]). Just as with
Algorithm 1, for ε > 0, we can use an arbitrary selection rule in Step 3, e.g.
Mk ∈ argmin{α(M)| M ∈ Rk}. To see that the algorithm using an arbitrary
selection rule is still finite, consider any infinite nested sequence of boxes {Mk}
generated by the algorithm. As k → +∞, by exhaustiveness Mk must shrink to
a single point ȳ, while by bound consistency, α(Mk) − CBV → 0, so that for
sufficiently large k : α(Mk) − CBV � ε, contrary to the deletion rule in Step 2
which implies that α(Mk)−CBV > ε ∀k. The selection rule can also vary during
the procedure: for instance, it may be preferable to use a breadth-first rule (every
node on a level is branched on before moving to the next level) at the initial levels
to identify promising branches, then to switch to a depth-first rule (the last node
created is selected for branching) to keep the set Rk within manageable size.

An analogous branch and bound Algorithm 2∗∗ can also be formulated for
problem (Q).

For large scale problems whose dimension cannot easily be reduced, the branch
and bound Algorithm 1∗∗ (or Algorithm 2∗∗) seems to be the best. Since each
partition set is reduced by cuts before computing the bound, this algorithm can
also be viewed as a kind of branch and cut procedure.

7. Numerical Examples

The basic Algorithm 1 as well as the two other variants have been coded in Pascal
and run on a P.C. Pentium III 450 MHz to solve, among others, a number of
problems taken from the literature. Although linear programs have been solved
by our own code and reoptimization techniques have not been used to solve the

UNIFIED MONOTONIC APPROACH TO GENERALIZED LINEAR FRACTIONAL PROGRAMMING 249

connected sequences of linear subprograms involved, the computational results are
quite encouraging and demonstrate the capability of these algorithms to efficiently
handle in a unified manner a wide class of problems including many of those earlier
treated differently depending on the form of the function �(.).

In this section we present some numerical examples. For each example we give
the data of the problem in its original formulation, the optimal solution, the number
of iterations needed to reach the optimal solution and the total number of iterations
needed to solve the problem, as well as the number of restarts, if any, together with
the iterations where restarts are made. Of course, the tolerance ε and the compu-
tation time are indicated. Most problems have been solved by all three algorithms
(Algorithms 1, 1*,1∗∗, or Algorithms 2, 2*, 2∗∗), for comparison. Example 5 (max-
imizing the sum of 5 linear fractional functions), Example 7 (minimizing the sum
of 7 linear fractional functions) and Example 12 (minimizing the product of 6 linear
fractional functions) suggest that the approach should be practical for problems
with moderate values of m, although, as should be expected for all deterministic
nonconvex global optimization methods, the computational time sharply increases
as m increases.

7.1. MAXMIN AND MINMAX

Solving a maxmin problem is equivalent to computing a vector πG(z) since

max

{
min

i=1,... ,m

fi(x)

gi(x)

∣∣∣∣ x ∈ D

}

= max

{
λ| λ � fi(x)

gi(x)
(i = 1, . . . , m), x ∈ D

}
.

On the other hand, solving a minmax problem reduces to solving a maxmin prob-
lem, since the two problems

min

{
max

i=1,... ,m

fi(x)

gi(x)
| x ∈ D

}
, max

{
min

i=1,... ,m

gi(x)

fi(x)
| x ∈ D

}

have the same optimal solutions and inverse optimal values.

EXAMPLE 1.

max min

{
37x1 + 73x2 + 13

13x1 + 13x2 + 13
,

63x1 − 18x2 + 39

13x1 + 26x2 + 13

}
: (35)

5x1 − 3x2 = 3, 1.5 � x1 � 3. (36)

With tolerance ε = 0.00000005 :
Optimal value 1.489510 .
Optimal solution x = (1.5, 1.5) found and confirmed in one iteration.
Computation time: 0.00 s.

250 NGUYEN THI HOAI PHUONG AND HOANG TUY

EXAMPLE 2.

min max

{
3x1 + x2 − 2x3 + 0.8

2x1 − x2 + x3
,

4x1 − 2x2 + x3

7x1 + 3x2 − x3

}
:

x1 + x2 − x3 � 1, −x1 + x2 − x3 � −1,

12x1 + 5x2 + 12x3 � 34.8, 12x1 + 12x2 + 7x3 � 29.1,

− 6x1 + x2 + x3 � −4.1

With tolerance ε = 0.00000005 :
Optimal value 0.573102 .
Optimal solution x = (1.015695, 0.590494, 1.403675) found and confirmed in
one iteration.
Computation time: 0.06 s.

7.2. MAXSUM

EXAMPLE 3. (taken from [7])

max {37x1 + 73x2 + 13

13x1 + 13x2 + 13
+ 63x1 − 18x2 + 39

13x1 + 26x2 + 13
}

s.t. 5x1 − 3x2 = 3

1.5 � x1 � 3

• By Algorithm 1, with tolerance ε = 0.01 :
Optimal value 5.000000 .
Optimal solution x = (3.000000, 4.000000).
Optimal solution found at iteration 1 and confirmed at iteration 11.
Computation time: 0.05 s.
One restart at iteration 5. Maximal number of vertices: 5.

• By Algorithm 1∗, with tolerance ε = 0.01 :
Optimal value: 5.000000.
Optimal solution: x = (3.000000, 4.000000).
Computation time: 0.11 s.
Optimal solution found at iteration 1 and confirmed at iteration 10.

• By Algorithm 1∗∗, with tolerance ε = 0.01:
Optimal value: 5.000000.
Optimal solution: x = (3.000000, 4.000000).
Computation time: 0.05 s.
Optimal solution found at iteration 1 and confirmed at iteration 7.

UNIFIED MONOTONIC APPROACH TO GENERALIZED LINEAR FRACTIONAL PROGRAMMING 251

EXAMPLE 4. (taken from [7])

max
3x1 + x2 − 2x3 + 0.8

2x1 − x2 + x3
+ 4x1 − 2x2 + x3

7x1 + 3x2 − x3

s.t.

∣∣∣∣∣∣
x1 + x2 − x3 � 1, −x1 + x2 − x3 � −1
12x1 + 5x2 + 12x3 � 34.8, 12x1 + 12x2 + 7x3 � 29.1
−6x1 + x2 + x3 � −4.1

• By Algorithm 1, with tolerance ε = 0.000001 :
Optimal value 2.471423.
Optimal solution x = (1.000003, 0.000000, 0.000003).
Optimal solution found at iteration 1 and confirmed at iteration 5.
Computation time: 0.05 s.
Maximal number of vertices: 1.

• By Algorithm 1∗, with tolerance ε = 0.01 :
Optimal value: 2.471423.
Optimal solution: x = (0.944685, 0.000000, 0.000000).
Optimal solution found at iteration 0 and confirmed at iteration 3.
Computation time: 0.05 s.

• By Algorithm 1∗∗, with tolerance ε = 0.01 :
Optimal value: 2.471424.
Optimal solution: x = (1.000002, 0.000000, 0.000002).
Optimal solution found at iteration 1 and confirmed at iteration 4.
Computation time: 0.06 s.
Maximal number of active nodes: 1.

EXAMPLE 5. Problem (P) (Maxsum) for m = 5, n = 12, fi(x) = 〈ci, x〉
+ri, gi(x) = 〈di, x〉 + si, D = {x| Ax � q, x � 0}, with

c1 = (0.0,−0.1,−0.3, 0.3, 0.5, 0.5,−0.8, 0.4,−0.4, 0.2, 0.2,−0.1), r1 = 14.6

d1 = (−0.3,−0.1,−0.1,−0.1, 0.1, 0.4, 0.2,−0.2, 0.4, 0.2,−0.4, 0.3), s1 = 14.2

c2 = (0.2, 0.5, 0.0, 0.4, 0.1,−0.6,−0.1,−0.2,−0.2, 0.1, 0.2, 0.3), r2 = 7.1

d2 = (0.0, 0.1,−0.1, 0.3, 0.3,−0.2, 0.3, 0.0,−0.4, 0.5,−0.3, 0.1), s2 = 1.7

c3 = (−0.1, 0.3, 0.0, 0.1,−0.1, 0.0, 0.3,−0.2, 0.0, 0.3, 0.5, 0.3), r3 = 1.7

d3 = (0.8,−0.4, 0.7,−0.4,−0.4, 0.5,−0.2,−0.8, 0.5, 0.6,−0.2, 0.6), s3 = 8.1

c4 = (−0.1, 0.5, 0.1, 0.1,−0.2,−0.5, 0.6, 0.7, 0.5, 0.7,−0.1, 0.1), r4 = 4.0

d4 = (0.0, 0.6,−0.3, 0.3, 0.0, 0.2, 0.3,−0.6,−0.2,−0.5, 0.8,−0.5), s4 = 26.9

c5 = (0.7,−0.5, 0.1, 0.2,−0.1,−0.3, 0.0,−0.1,−0.2, 0.6, 0.5,−0.2), r5 = 6.8

d5 = (0.4, 0.2,−0.2, 0.9, 0.5,−0.1, 0.3,−0.8,−0.2, 0.6,−0.2,−0.4), s5 = 3.7

252 NGUYEN THI HOAI PHUONG AND HOANG TUY

A =

−1.8 −2.2 0.8 4.1 3.8 −2.3 −0.8 2.5 −1.6 0.2 −4.5 −1.8
4.6 −2.0 1.4 3.2 −4.2 −3.3 1.9 0.7 0.8 −4.4 4.4 2.0
3.7 −2.8 −3.2 −2.0 −3.7 −3.3 3.5 −0.7 1.5 −3.1 4.5 −1.1

−0.6 −0.6 −2.5 4.1 0.6 3.3 2.8 −0.1 4.1 −3.2 −1.2 −4.3
1.8 −1.6 −4.5 −1.3 4.6 3.3 4.2 −1.2 1.9 2.4 3.4 −2.9

−0.5 −4.1 1.7 3.9 −0.1 −3.9 −1.5 1.6 2.3 −2.3 −3.2 3.9
0.3 1.7 1.3 4.7 0.9 3.9 −0.5 −1.2 3.8 0.6 −0.2 −1.5
0.5 −4.2 3.6 −0.6 −4.8 1.5 −0.3 0.6 −3.6 0.2 3.8 −2.8

−0.1 3.3 −4.3 2.4 4.1 1.7 1.0 −3.3 4.4 −3.7 −1.1 −1.4
−0.6 2.2 2.5 1.3 −4.3 −2.9 −4.1 2.7 −0.8 −2.9 3.5 1.2

4.3 1.9 −4.0 −2.6 1.8 2.5 0.6 1.3 −4.3 −2.3 4.1 −1.1
0.0 0.4 −4.5 −4.4 1.2 −3.8 −1.9 1.2 3.0 −1.1 −0.2 2.5

−0.1 −1.7 2.9 1.5 4.7 −0.3 4.2 −4.4 −3.9 4.4 4.7 −1.0
−3.8 1.4 −4.7 1.9 3.8 3.5 1.5 2.3 −3.7 −4.2 2.7 −0.1

0.2 −0.1 4.9 −0.9 0.1 4.3 1.6 2.6 1.5 −1.0 0.8 1.6

q = (15.7, 31.8,−36.4, 38.5, 40.3, 10.0, 89.8, 5.8, 2.7,

−16.3,−14.6,−72.7, 57.7,−34.5, 69.1)'

• By Algorithm 1, with tolerance ε = 0.01 :
Optimal value: 16.077978.
Optimal solution:

x = (6.223689,20.060317, 3.774684, 5.947841, 0.000000, 7.456686,

0.000000, 23.312579, 0.000204, 41.031824, 0.000000, 3.171106).

Optimal solution found at iteration 1 and confirmed at iteration 620.
Computation time: 65.58 s.
Maximal number of vertices: 18.

• By Algorithm 1∗∗, with tolerance ε = 0.01 :
Optimal value: 16.077978.
Optimal solution:

x = (6.224297, 20.059738, 3.774868, 5.947937, 0.000000, 7.456478,

0.000000, 23.312241, 0.000204, 41.031278, 0.000000, 3.171060).

Optimal solution found at iteration 8 and confirmed at iteration 11.
Computation time: 4.61 s.
Maximal number of active nodes: 4.

UNIFIED MONOTONIC APPROACH TO GENERALIZED LINEAR FRACTIONAL PROGRAMMING 253

7.3. MINSUM

EXAMPLE 6. (taken from [7]).

min

{−x1 + 2x2 + 2

3x1 − 4x2 + 5
+ 4x1 − 3x2 + 4

−2x1 + x2 + 3

}
s.t. x1 + x2 � 1.5, x1 � x2, 0 � x1 � 1. 0 � x2 � 1

• By Algorithm 2, with tolerance ε = 0.01,
Optimal value: 1.623188.
Optimal solution: x = (0.000000, 0.282165).
Optimal solution found at iteration 21 and confirmed at iteration 36.
Computation time: 0.11 s.
Maximal number of vertices: 16.

• By Algorithm 2∗, with tolerance ε = 0.01 :
Optimal value: 1.623184.
Optimal solution: x = (0.000000, 0.284476).
Optimal solution found at iteration 21 and confirmed at iteration 36.
Computation time: 0.28 s.

• By Algorithm 2∗∗, with tolerance ε = 0.01 :
Optimal value: 1.623294.
Optimal solution: x = (0.000000, 0.275655).
Optimal solution found at iteration 8 and confirmed at iteration 12.
Computation time: 0.22 s.
Maximal number of active nodes: 4.

EXAMPLE 7. Problem (Q) (Minsum) for m = 7, n = 10, fi(x) = 〈ci, x〉 +
ri, gi(x) = 〈di, x〉 + si, D = {x| Ax � q, x � 0}, with

c1 = (−0.7, 0.0, 0.4, 0.7, 0.4,−0.1,−0.4, 0.9,−0.1, 0.0) r1 = 19.3

d1 = (0.4,−0.6, 0.0, 0.4,−0.1,−0.3,−0.1, 0.6, 0.7, 0.1) s1 = 5.4

c2 = (0.3, 0.3, 0.1,−0.3,−0.3, 0.1,−0.1, 0.0,−0.1,−0.5) r2 = 25.0

d2 = (0.5,−0.4,−0.4,−0.1,−0.3, 0.4,−0.1, 0.2,−0.1,−0.4) s2 = 34.7

c3 = (0.3, 0.3, 0.0,−0.1, 0.1,−0.1, 0.6, 0.1, 0.4,−0.1) r3 =−1.0

d3 = (0.2,−0.2, 0.4, 0.6,−0.6,−0.5, 0.2, 0.5,−0.6,−0.5) s3 = 43.4

c4 = (0.6, 0.3, 0.4,−0.3,−0.2, 0.8, 0.1, 0.2,−0.1,−0.1) r4 = 12.8

d4 = (0.2,−0.4,−0.5, 0.1, 0.9, 0.0, 0.4,−0.9,−0.5,−0.2) s4 = 19.3

c5 = (0.0, 0.5,−0.2,−0.1, 0.2, 0.0, 0.3, 0.7,−0.8, 0.5) r5 = 6.2

254 NGUYEN THI HOAI PHUONG AND HOANG TUY

d5 = (0.5,−0.1, 0.6, 0.8, 0.6, 0.0,−0.7,−0.5,−0.1,−0.5) s5 = 51.7

c6 = (0.2,−0.5,−0.4,−0.2,−0.2, 0.7,−0.9,−0.2, 0.3, 0.5) r6 = 26.6

d6 = (0.5,−0.2, 0.0, 0.1,−0.3, 0.2,−0.1, 0.3, 0.0, 0.3) s6 = 7.5

c7 = (−0.5, 0.0, 0.1, 0.4, 0.4, 0.9, 0.6, 0.0, 0.2, 0.2) r7 =−0.6

d7 = (−0.5, 0.4, 0.4,−0.3, 0.1, 0.3,−0.7,−0.2, 0.2, 0.1) s7 = 12.8

A =

4.9 3.5 3.7 0.7 2.1 1.9 −2.3 2.4 3.1 3.3
1.6 1.5 −0.4 4.8 −4.7 −0.1 −1.4 −2.9 −2.7 −4.7

−1.0 −1.0 −2.7 −0.6 2.9 −0.5 −2.5 4.8 0.8 3.5
−0.7 −0.3 −0.8 −1.9 4.3 1.1 −2.0 −2.7 4.4 −1.4

4.4 −4.9 2.7 1.4 −0.3 2.0 3.4 −0.2 −0.4 −3.0
2.6 1.5 2.2 −1.8 −2.7 0.4 0.3 −0.9 2.5 −4.1

−0.8 −4.4 −1.3 −0.8 1.8 0.8 1.4 −2.6 1.4 −3.8
1.6 2.1 −1.0 −2.2 2.50 −3.0 −1.5 2.7 −2.2 −4.1

−4.5 −2.2 3.1 2.8 −2.1 4.5 3.1 2.6 −4.4 −4.0
−4.0 2.6 −2.3 0.6 −4.8 −2.5 3.2 0.5 −3.0 −3.6

3.2 −1.5 −2.8 2.0 1.6 3.8 −1.6 0.9 2.6 −3.9
0.6 0.1 1.1 3.2 −3.8 −3.2 1.7 2.6 4.0 −4.4

−4.8 1.8 3.7 2.5 −3.4 0.2 −3.5 3.0 1.1 4.4
2.0 1.3 −3.9 −3.9 −1.1 −4.3 2.5 −1.2 −4.7 −2.4
1.9 −3.6 4.3 −0.9 −0.1 −1.0 0.1 0.1 0.0 4.1

q = (161.1,−65.6, 45.7, 35.1, 3.5,−18.8,−46.4,−37.7,−59.4,
− 117.0, 24.8, 1.5, 55.6,−124.8,−27.2)'

• By Algorithm 2∗∗, with tolerance ε = 0.01:
Optimal value: 5.642336
Optimal solution:

x = (8.078763, 1.949795, 4.532075, 8.677625, 5.769029, 0.000000,

0.001348, 0.000000, 11.303767, 13.543402).

Optimal solution found at iteration 341 and confirmed at iteration 926.
Computational time: 376.90 s.
Maximal number of active nodes: 9.

7.4. MAXPRODUCT

EXAMPLE 8. (data from [5], but with maxproduct instead of maxsum).

max

{
37x1 + 73x2 + 13

13x1 + 13x2 + 13
× 63x1 − 18x2 + 39

13x1 + 26x2 + 13

}
s.t. 5x1 − 3x2 = 3, 1.5 � x1 � 3

UNIFIED MONOTONIC APPROACH TO GENERALIZED LINEAR FRACTIONAL PROGRAMMING 255

• By Algorithm 1, with tolerance: ε = 0.01:
Optimal value: 5.098709.
Optimal solution: x = (1.500000, 1.500000).
Optimal solution found at iteration 3 and confirmed at iteration 6.
Computation time: 0.00 s.
Maximal number of vertices: 4.

• By Algorithm 1∗∗, with tolerance ε = 0.01:
Optimal value: 5.098709.
Optimal solution: x = (1.500000, 1.500000).
Optimal solution found at iteration 1 and confirmed at iteration 5.
Computation time: 0.05 s.
Maximal number of boxes: 3

EXAMPLE 9.

max

(
3x1 + x2 − 2x3 + 0.8

2x1 − x2 + x3
× 4x1 − 2x2 + x3

7x1 + 3x2 − x3

)
s.t. x1 + x2 − x3 � 1, −x1 + x2 − x3 � −1, 12x1 + 5x2 + 12x3 � 34.8,

12x1 + 12x2 + 7x3 � 29.1, −6x1 + x2 + x3 � −4.1

• By Algorithm 1, with tolerance ε = 0.01:
Optimal value: 1.085714.
Optimal solution: x = (1.000000, 0.000000, 0.000000).
Optimal solution found at iteration 1 and confirmed at iteration 10.
Computation time: 0.00 s.
Maximal number of vertices: 5.

• By Algorithm 1∗∗, with tolerance ε = 0.01 :
Optimal value: 1.085714.
Optimal solution: x = (1.000002, 0.000000, 0.000002).
Optimal solution found at iteration 1 and confirmed at iteration 9.
Computation time: 0.06 sec.
Maximal number of active nodes: 3.

7.5. MINPRODUCT

EXAMPLE 10.

min
−x1 + 2x2 + 2

3x1 − 4x2 + 5
× 4x1 − 3x2 + 4

−2x1 + x2 + 3
s.t. x1 + x2 = 1.5, x1 � x2, 0 � x1 � 1, 0 � x2 � 1

• By Algorithm 1, with tolerance ε = 0.01:
Optimal value: 0.533335.

256 NGUYEN THI HOAI PHUONG AND HOANG TUY

Optimal solution: x = (0.000000, 0.000003).
Optimal solution found at iteration 1 and confirmed at iteration 37.
Computation time : 0.11 s.
Maximal number of vertices: 3.

• By Algorithm 1∗, with tolerance ε = 0.01:
Optimal value: 0.533335.
Optimal solution: x = (0.000000, 0.000004).
Optimal solution found at iteration 1 and confirmed at iteration 30.
Computation time: 0.22 s.

• By Algorithm 1∗∗, with tolerance ε = 0.001:
Optimal value: 0.533333.
Optimal solution: x = (0.000000, 0.000000).
Optimal solution found at iteration 1 and confirmed at iteration 16.
Computation time: 0.05 s.
Maximal number of active nodes: 4.

EXAMPLE 11. (taken from [3]). Problem (Q) (Minproduct) for m = 2, n =
3, fi(x) = 〈ci, x〉 + ri, gi(x) = 1, D = {x| Ax � q, x � 0}, with

c1 = (1, 0, 1/9) r1 = 0

c2 = (0, 1, 1/9) r2 = 0

A =

9 9 2
8 1 8
1 8 8
−7 −1 −1
−1 −7 −1
−1 −1 −7
1 0 0
0 1 0

q = (81, 72, 72, −9, −9, −9, 8, 8)'

• By Algorithm 2∗∗, with tolerance ε = 0.01:
Optimal value: 0.901234.
Optimal solution: x = (0.000000, 8.000000, 1.000000).
Optimal solution found at iteration 1 and confirmed at iteration 32.
Computation time: 0.38 s.
Maximal number of active nodes: 4.

UNIFIED MONOTONIC APPROACH TO GENERALIZED LINEAR FRACTIONAL PROGRAMMING 257

EXAMPLE 12. Problem (Q) (Minproduct) for m = 6, n = 12, fi(x) = 〈ci, x〉+
ri, gi(x) = 〈di, x〉 + si, D = {x| Ax � q, x � 0}, with

c1 = (−0.2,−0.7,−0.1, 0.4, 0.0, 0.8, 0.1,−0.8,−0.2, 0.0, 0.1, 0.4) r1 = 21
d1 = (0.2, 0.5,−0.6, 0.1, 0.6, 0.4,−0.4,−0.3, 0.7, 0.5, 0.4,−0.1) s1 = 13.3
c2 = (−0.1, 0.1,−0.4,−0.1,−0.1, 0.4, 0.2, 0.5, 0.3,−0.4,−0.3, 0.3) r2 = 16.3
d2 = (−0.3,−0.2,−0.7, 0.1, 0.2,−0.2,−0.5, 0.4, 0.3, 0.0, 0.6,−0.5) s2 = 16
c3 = (0.8, 0.0,−0.1, 0.4, 0.2, 0.1,−0.5, 0.0, 0.5, 0.6,−0.3,−0.4) r3 = 3.7
d3 = (0.1, 0.0, 0.0, 0.3, 0.2, 0.7, 0.4, 0.2,−0.1,−0.5, 0.6,−0.1) s3 = 16.7
c4 = (0.6, 0.2, 0.2,−0.3, 0.5, 0.4, 0.1, 0.6,−0.3, 0.3, 0.4, 0.3) r4 =−1.8
d4 = (−0.3, 0.0, 0.0,−0.5,−0.1, 0.2, 0.6,−0.6, 0.1,−0.2, 0.8,−0.3) s4 = 21.5
c5 = (−0.3,−0.3, 0.5, 0.1, 0.2,−0.5, 0.1, 0.2, 0.0, 0.6, 0.3,−0.2) r5 = 5
d5 = (0.3, 0.0, 0.3, 0.0,−0.8,−0.3, 0.3,−0.9,−0.1,−0.6,−0.1, 0.2) s5 = 18.7
c6 = (0.2,−0.1, 0.0, 0.0,−0.2,−0.4, 0.0,−0.6, 0.8,−0.2, 0.0,−0.1) r6 = 12.7
d6 = (0.0, 0.6, 0.0, 0.1, 0.0,−0.2, 0.0,−0.5, 0.2,−0.3, 0.3, 0.1) s6 = 19.2

A =

1.9 0.0 −0.2 −1.5 1.8 0.9 −1.0 4.5 4.5 −3.5 −1.8 −4.8
2.9 3.7 −4.8 −1.9 1.8 −3.7 1.8 2.5 −2.9 1.9 −3 3.2
3.3 2.4 3.3 4.8 −0.3 3.9 0.8 −1.7 2.0 −0.3 −1.8 2.2

−4.3 1.8 2.1 −4.5 −0.5 2.4 1.4 −0.3 −2.0 −2.8 0.4 4.5
1.5 −0.3 0.4 1.2 1.1 1.9 1.5 −1.2 −3.3 4.4 3.2 −4.3

−3.2 2.4 −4.5 −1 −2.7 3.7 −0.1 3.9 −1.9 3.2 2.1 1.3
0.9 0.5 4.0 −1.5 1.2 −1.5 1.2 −3.7 −0.1 0.0 −2.4 −4.1

−4.1 −4.5 2.2 −3.1 4.4 4.8 −3.4 2.2 −2.1 2.3 2.6 −1.4
2.4 2.3 4.7 −1.7 −1.6 3.8 −4.0 1.3 −0.4 −0.4 2.9 1.2
0.0 −3.2 −0.2 2.0 −2.9 2.7 3.1 2.9 −2.6 −4.3 0.2 4.6

−1.3 −0.9 3.4 3.9 4.9 2.3 −3.0 −1.5 2.5 −1.7 1.7 −2.9
3.5 3.4 2.5 −0.4 −4.5 2.8 −1.7 2.1 −2.9 −4.7 1.3 4.5
1.9 −0.9 −3.3 −2.3 1.6 −0.5 −4.9 3.0 −4.9 3.6 −3.7 2.2

−1.4 3.5 −2.8 −1.2 −4.7 −3.2 2.2 −4.0 2.8 3.3 4.4 −3.1
−2.1 2.6 −3.9 1.0 2.3 1.8 4.2 1.8 2.7 0.9 3.3 1.7

q = (−20.1, −1.0, 82.6, 14.6, 37.7, 40.7,−23, 47.4, 83.0, 9.9, 33.7,

49.1, 14.0,−45.6, 30.4)'

• Since the problem can be converted into an equivalent maxproduct problem,
we use Algorithm 1∗∗ to solve the latter. With tolerance ε = 0.1 the results are as
follows:
Optimal value: 0.051237.
Optimal solution:

x = (0.000000, 0.000000, 1.698618, 4.345077, 4.300919, 4.020829, 0.000000,

1.432845, 0.791345, 4.193991, 0.000000, 4.152697).

258 NGUYEN THI HOAI PHUONG AND HOANG TUY

Optimal solution found at iteration 38 and confirmed at iteration 604.
Computation time: 135.01 s.
Maximal number of active nodes: 9.

Acknowledgment

The authors are grateful to the anonymous referees for useful remarks and sugges-
tions which have helped to improve a first version of the paper.

References

1. Barros, A.I. (1998), Discrete and Fractional Programming Techniques for Loaction Models,
Kluwer.

2. Barros, A.I. and Frenk, J.B.G. (1995), Generalized fractional programming and cutting plane
algorithms’, Journal of Optimization Theory and Applications 87: 103–120.

3. Benson, H.P. and Boger, G.M. (2000), Outcome-space cutting plane algorithm for linear
multiplicative programming, Journal of Optimization Theory and Applications 104: 301–322.

4. Cambini, A., Martein, L. and Schaible, S. (1989), On maximizing a sum of ratios, Journal of
Information and Optimization Science 10: 141–151.

5. Charnes, A. and Cooper, W.W. (1962), Programming with Linear Fractional Functionals, Naval
Research Logistics Quaterly 9: 181–186.

6. Craven, B.D. (1988), Fractional Programming, Heldermann Verlag, Berlin.
7. Falk, J.E. and Palocsay, S.W. (1992), Optimizing the sum of linear fractional functions. In:

Floudas, C. and Pardalos, P. (eds.), Global Optimization. Princeton University Press, pp. 221–
258.

8. Crouzeix, J.P., Ferland, J.A. and Schaible, S. (1985), An algorithm for generalized fractional
programming, Journal of Optimization Theory and Applications 47: 35–49.

9. Konno, H. and Abe, N. (1999), Minimization of the sum of three linear fractional functions,
Journal of Global Optimization 15: 419–432.

10. Konno, H. and Kuno, T. (1992), Linear multiplicative programming, Mathematical Program-
ming 56: 51–64.

11. Konno, H., Thach, P.T. and Tuy, H. (1997), Optimization on Low Rank Nonconvex Structures,
Kluwer Academic Publishers, Dordrecht/Boston/London.

12. Konno, H., Yajima, Y. and Matsui, T. (1991), Parametric simplex algorithms for solving a
special class of nonconvex minimization problems, Journal of Global Optimization 1: 65–81.

13. Konno, H. and Yajima, Y. (1992), Minimizing and maximizing the product of linear fractional
functions. In: Floudas, C. and Pardalos, P. (eds.), Recent Advances in Global Optimization eds.
Princeton University Press, pp. 259–273.

14. Konno, H. and Yamashita, Y. (1997), Minimization of the sum and the product of several linear
fractional functions, Tokyo Institute of Technology, Technical Report, Department of IE &
Management, to appear in Naval Research Logistics.

15. Luc, L.T. (2001), Reverse polyblock approximation for optimization over the weakly efficient
set and efficient set, Acta Mathematica Vietnamica 26: 65–80.

16. Rubinov, A., Tuy, H. and Mays, H. (2001), Algorithm for a monotonic global optimization
problem, Optimization 49: 205–221.

UNIFIED MONOTONIC APPROACH TO GENERALIZED LINEAR FRACTIONAL PROGRAMMING 259

17. Stancu-Minasian, I.M. (1997), Fractional Programming: Theory, Methods and Applications,
Kluwer, Dordrecht.

18. Schaible, S. (1992), Fractional Programming. In: Horst, R. and Pardalos, P. (eds.), Handbook
of Global Optimization, Kluwer, Dordrecht, pp. 495–608.

19. Tawarmalani, M. and Sahinidis, N.V. (2001), Semiddefinite relaxations of fractional programs
via novel convexification techniques, Journal of Global Optimization 20: 137–158.

20. Tuy, H. (1998), Convex Analysis and Global Optimization, Kluwer, Dordrecht.
21. Tuy, H. (1999), Normal sets, polyblocks and monotonic optimization, Vietnam Journal of

Mathematics 27(4): 277–300.
22. Tuy, H. (2000), Monotonic optimization: problems and solution approaches, SIAM Journal of

Optimization 11(2): 464–494.
23. Tuy, H. and Luc, L.T. (2000), A new approach to optimization under monotonic constraint,

Journal of Global Optimization 18: 1–15.

